a new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

نویسندگان

mehmet ekici

department of mathematics, faculty of science and arts, bozok university, yozgat, turkey abdullah sonmezoglu

department of mathematics, faculty of science and arts, bozok university, 66100 yozgat, turkey elsayed m. e. zayed

mathematics department, faculty of science, zagazig university, zagazig, egypt

چکیده

in this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (fpdes) in the sense of modified riemann-liouville derivative. with the aid of symbolic computation, we choose the space-time fractional zakharov-kuznetsov-benjamin-bona-mahony (zkbbm) equation in mathematical physics with a source to illustrate the validity and advantages of the novel method. as a result, some new exact solutions including solitary wave solutions and periodic wave solutions are successfully obtained. the proposed approach can also be applied to other nonlinear fpdes arising in mathematical physics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

A New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics

In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

An approximate method for solving fractional system differential equations

IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...

متن کامل

Legendre Wavelets for Solving Fractional Differential Equations

In this paper, we develop a framework to obtain approximate numerical solutions to ordi‌nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti‌lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
computational methods for differential equations

جلد ۲، شماره ۳، صفحات ۱۵۳-۱۷۰

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023